Search results for " Anodic alumina membranes"

showing 10 items of 17 documents

Electrochemical Fabrication of Sn-Co Nanowires in Anodic Alumina Templates

2008

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical Deposition Anodic Alumina Membranes SnCo alloys Nanowires Lithium Batteries
researchProduct

Processo di produzione di filamenti nanometrici in lega amorfa Sn-Co

2008

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical deposition Lithium Battery Anodic alumina membranes Nanowires SnCo alloy
researchProduct

Nanoporous alumina membranes filled with solid acid for thin film fuel cells at intermediate temperatures

2004

Thin film fuel cells have been fabricated by impregnation of inorganic porous membranes with inorganic proton conductor. Anodic alumina membranes (50 μm thick and pore diameter of 200 nm), filled with CsHSO4 salt have been used as protonic conductor in a hydrogen-oxygen fuel cell working between 423 and 443 K in dry atmosphere. Polarization curves at 433 K showing ohmic control with open circuit values near 0.8 V and short circuit current around 8 mA cm−2 have been obtained. Possible causes of degradation as well as alternative routes to overcome some of the problems encountered with this approach will be reported. Keywords: Solid acid, Anodic alumina membranes, Pore filling, Thin film fuel…

Thin film fuel cellSolid acidMaterials scienceAnodic alumina membraneNanoporousOpen-circuit voltageProton exchange membrane fuel cellIntermediate temperature fuel cellAnodelcsh:ChemistrySettore ING-IND/23 - Chimica Fisica Applicatalcsh:Industrial electrochemistrylcsh:QD1-999Chemical engineeringAnodic alumina membranes Intermediate temperature fuel cell Pore filling Solid acid Thin film fuel cellElectrochemistryThin filmPore fillingSolid acid; Anodic alumina membranes; Pore filling; Thin film fuel cell; Intermediate temperature fuel cellPolarization (electrochemistry)Short circuitlcsh:TP250-261Proton conductor
researchProduct

Electrodeposition of lead dioxide nanowires with a high aspect ratio

2008

Settore ING-IND/23 - Chimica Fisica ApplicataTemplate Electrosynthesis Anodic Alumina Membranes Nanowires Lead Dioxide
researchProduct

Optimized bath for electroless deposition of palladium on amorphous alumina membranes

2006

A new bath for the electroless deposition of palladium on anodic alumina (AA) membranes is proposed. It was found that the optimal conditions for the uniform deposition of palladium, with minimal damage to the AA membranes, were under conditions of pH 8.4 and plating times shorter than 30 min. The deposited Pd layer was detected by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis. The morphology of the AA membrane before and after plating was examined by scanning electron microscopy (SEM). EDX analysis revealed that palladium was deposited only on the surfaces of the membrane and Sn ions, coming from the sensitizing bath, were incorporated into the palladium layer. EDTA in…

inorganic chemicalsMaterials scienceScanning electron microscopeInorganic chemistrychemistry.chemical_elementSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsSurfaces Coatings and FilmsAmorphous solidMembranechemistryAluminiumPlatingMaterials ChemistryFourier transform infrared spectroscopyElectroless deposition Palladium Dehydrogenation Anodic alumina membranesLayer (electronics)PalladiumSurface and Coatings Technology
researchProduct

Sintesi per via elettrochimica di nanowires di leghe Co-Sn

2008

Electrochemical deposition Anodic alumina membranes Nanowires Lithium batterry SnCo alloy
researchProduct

Template electrosynthesis of La(OH)3 and Nd(OH)3 nanowires using porous anodic alumina membranes

2007

High quality arrays of Ln(OH)3 (Ln = La, Nd) nanowires have been successfully fabricated for the first time by an electrochemical process using anodic alumina membrane templates. A physico-chemical characterisation of electrodeposited hydroxides has been carried out by different techniques (XRD, SEM and EDX). The results show that the synthesized nanostructures are crystalline, dense, continuous, well aligned, and with high aspect ratio, suggesting further development of possible applications in the lanthanide family species. Keywords: Nanowires, Anodic alumina membranes, Hydroxide electrodeposition, Template, Lanthanide compounds

LanthanideNanostructureMaterials scienceAnodic alumina membranes Hydroxide electrodeposition Lanthanide compounds Nanowires TemplateScanning electron microscopeNanowireMineralogytemplatelanthanide compoundsElectrosynthesisElectrochemistrylcsh:ChemistryMembraneSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringlcsh:Industrial electrochemistrylcsh:QD1-999hydroxide electrodepositionnanowires; anodic alumina membranes; hydroxide electrodeposition; template; lanthanide compoundsnanowireX-ray crystallographyElectrochemistryanodic alumina membranelcsh:TP250-261
researchProduct

Fabrication and characterization of Metal and Metal Oxide Nanostructures Grown by metal displacement deposition into anodic alumina membranes

2011

Abstract preview not available - see full-text PDF article.

lcsh:Computer engineering. Computer hardwareSettore ING-IND/23 - Chimica Fisica ApplicataComputingMethodologies_DOCUMENTANDTEXTPROCESSINGlcsh:TP155-156lcsh:TK7885-7895lcsh:Chemical engineeringnanowires nanotubes anodic alumina membranes template synthesis cementationComputingMilieux_MISCELLANEOUSComputingMethodologies_COMPUTERGRAPHICSANODIC ALUMINA MEMBRANES TEMPLATE SUNTHESYS CEMENTATION NANOTUBES NANOWIRES
researchProduct

Growth and Characterization of Ordered PbO[sub 2] Nanowire Arrays

2008

Large arrays of PbO 2 nanowires having high aspect ratios (length-to-width ratio) were grown by potentiostatic electrodeposition into anodic alumina templates under anodic polarization. Different electrolytic solutions were used in order to obtain nanowires of pure α-PbO 2 , pure β-PbO 2 , and a a + β mixture, We have found that, in a lead nitrate bath, a crystallographic structure of nanowires depends on pH; this latter was varied adding diluted nitric acid to the electrolyte. Nanowires of pure β-PbO 2 were obtained at pH 0.6, while mixed α-PbO 2 + β-PbΟ 2 nanowires were grown at pH 2. Pure α-phase was obtained in a bath containing lead acetate at pH 6.6. In all deposition conditions, nano…

Materials scienceRenewable Energy Sustainability and the EnvironmentNanowireAnalytical chemistryLead dioxideNanotechnologyCrystal structureElectrolyteCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAnodeElectrochemical deposition Anodic alumina membranes Lead dioxide Nanowireschemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryNitric acidMaterials ChemistryElectrochemistryVapor–liquid–solid methodPolarization (electrochemistry)Journal of The Electrochemical Society
researchProduct

Advances in Anodic Alumina Membranes-based fuel cell: CsH2PO4 pore-filler as proton conductor at room temperature

2009

Abstract Anodic alumina membranes (AAM) filled with cesium hydrogen phosphate proton conductor have been tested as inorganic composite electrolyte for hydrogen–oxygen thin film (≤50 μm) fuel cell (TFFC) working at low temperatures (25 °C), low humidity ( T gas  = 25 °C) and low Pt loading (1 mg cm −2 ). Single module TFFC delivering a peak power of around 15–27 mW cm −2 , with open circuit voltage (OCV) of about 0.9 V and short circuit current density in the range 80–160 mA cm −2 have been fabricated. At variance with pure solid acid electrolytes showing reproducibility problems due to the scarce mechanical resistance, the presence of porous alumina support allowed to replicate similar fuel…

Renewable Energy Sustainability and the EnvironmentChemistryOpen-circuit voltageAnodic alumina membranes Cesium hydrogen phosphate Composite proton conductors Pore filling Thin film fuel cellAnalytical chemistryEnergy Engineering and Power TechnologyElectrolyteElectrochemistryDielectric spectroscopySettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringDifferential thermal analysisElectrical and Electronic EngineeringPhysical and Theoretical ChemistryThin filmShort circuitCesium hydrogen phosphate Anodic alumina membranes Pore filling Composite proton conductors Thin film fuel cellProton conductor
researchProduct